Well-posedness of time-fractional advection-diffusion-reaction equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations

We establish the well-posedness of an hp-version time-stepping discontinuous Galerkin (DG) method for the numerical solution of fractional super-diffusion evolution problems. In particular, we prove the existence and uniqueness of approximate solutions for generic hp-version finite element spaces featuring non-uniform time-steps and variable approximation degrees. We then derive new hp-version ...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations.

We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative o...

متن کامل

An explicit high order method for fractional advection diffusion equations

We propose a high order explicit finite difference method for fractional advection diffusion equations. These equations can be obtained from the standard advection diffusion equations by replacing the second order spatial derivative by a fractional operator of order α with 1 < α ≤ 2. This operator is defined by a combination of the left and right Riemann–Liouville fractional derivatives. We stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractional Calculus and Applied Analysis

سال: 2019

ISSN: 1311-0454,1314-2224

DOI: 10.1515/fca-2019-0050